翻訳と辞書
Words near each other
・ Cateran Hole
・ Cateran Trail
・ Caterer (surname)
・ Caterham
・ Category mistake
・ Category O
・ Category of abelian groups
・ Category of being
・ Category of elements
・ Category of finite-dimensional Hilbert spaces
・ Category of groups
・ Category of magmas
・ Category of manifolds
・ Category of medial magmas
・ Category of metric spaces
Category of modules
・ Category of preordered sets
・ Category of relations
・ Category of rings
・ Category of sets
・ Category of small categories
・ Category of topological spaces
・ Category of topological vector spaces
・ Category performance ratio
・ Category theory
・ Category utility
・ Categoría Primera A
・ Categoría Primera B
・ Categoría Primera C
・ Catellani Reaction


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Category of modules : ウィキペディア英語版
Category of modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphism are all module homomorphisms between left ''R''-modules. The category of right modules is defined in the similar way.
Note: Some authors use the term module category for the category of modules; this term is non-standard as well as ambiguous since it could also refer to a category with a monoidal-category action.〔(【引用サイトリンク】title=module category in nLab )
== Properties ==
The category of left modules (or that of right modules) is an abelian category. The category has enough projectives〔trivially since any module is a quotient of a free module.〕 and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full subcategory of the category of modules.
Projective limits and inductive limits exist in the category of (say left) modules.
Over a commutative ring, together with the tensor product of modules ⊗, the category of modules is a symmetric monoidal category.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Category of modules」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.